Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Tassos C Bountis
Автор Vassilios M Rothos
Дата выпуска 1996-07-01
dc.description It has been proved by Ziglin, for a large class of two-degree-of-freedom (2DOF) Hamiltonian systems, that transverse intersections of the invariant manifolds of saddle fixed points imply infinite branching of solutions in the complex time plane and the non-existence of a second analytic integral of the motion. Here, we follow a similar approach to show the existence of infinitely sheeted solutions for 2DOF. Hamiltonians which exhibit, upon perturbation, subharmonic bifurcations of resonant tori around an elliptic fixed point. Moreover, as shown recently, these Hamiltonian systems are non-integrable if their resonant tori form a dense set.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the analytic structure of two-degree-of-freedom Hamiltonian systems around an elliptic fixed point
Тип paper
DOI 10.1088/0951-7715/9/4/003
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 9
Первая страница 877
Последняя страница 886
Аффилиация Tassos C Bountis; Department of Mathematics, University of Patras, GR 261 10, Patras, Greece
Аффилиация Vassilios M Rothos; Department of Mathematics, University of Patras, GR 261 10, Patras, Greece
Выпуск 4

Скрыть метаданые