Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Philip Boyland
Дата выпуска 1996-11-01
dc.description In this paper techniques of twist map theory are applied to the annulus maps arising from dual billiards on a strictly convex closed curve in the plane. It is shown that there do not exist invariant circles near when there is a point on where the radius of curvature vanishes or is discontinuous. In addition, when the radius of curvature is not there are examples with orbits that converge to a point of . If the derivative of the radius of curvature is bounded, such orbits cannot exist. There is also a remark on the connection of the inverse problems for invariant circles in billiards and dual billiards. The final section of the paper concerns an impact oscillator whose dynamics are shown to be the same as a dual billiards map.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Dual billiards, twist maps and impact oscillators
Тип paper
DOI 10.1088/0951-7715/9/6/002
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 9
Первая страница 1411
Последняя страница 1438
Аффилиация Philip Boyland; Institute for Mathematical Sciences, SUNY at Stony Brook, Stony Brook, NY 11794, USA
Выпуск 6

Скрыть метаданые