Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jonathan A D Wattis
Дата выпуска 1996-11-01
dc.description In this paper we generalize the results of an earlier paper to describe a moving breather in a discrete sine - Gordon system. The method uses the calculus of variations and perturbation theory to find the discreteness effects of a breather moving through a nonlinear Klein - Gordon lattice. These results are then used to calculate the energy contained in a discrete breather and this is shown to be less than the corresponding breather in a continuous system. The second part of the paper considers the variation of kinetic and potential energies with position of breather; these variations are analysed using Peierls - Nabarro-type calculations. The results of this analysis show that small amplitude breathers can move through a lattice almost unhindered by discreteness, thus demonstrating recent results of MacKay and Aubry.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Variational approximations to breathers in the discrete sine - Gordon equation II: moving breathers and Peierls - Nabarro energies
Тип paper
DOI 10.1088/0951-7715/9/6/011
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 9
Первая страница 1583
Последняя страница 1598
Аффилиация Jonathan A D Wattis; Department of Theoretical Mechanics, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Выпуск 6

Скрыть метаданые