Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Hartje Kriete
Дата выпуска 1996-11-01
dc.description In this paper we discuss the continuity of filled-in Julia sets of functions meromorphic in the complex plane, i.e. rational or transcendental functions, or polynomials. The Main Theorem is: The filled-in Julia set depends continuously on the function provided the function in question has no Baker domain, wandering domain or parabolic cycle (theorem 3.1). The proofs are based on homotopy arguments and do not require any assumption on the number of singular values, actually, they simultaneously work for rational and transcendental functions. By examples we show the Main Theorem to be sharp. In order to illustrate the usage of filled-in Julia sets, applications to (relaxed) Newton's method are described. Using the continuity result a closing lemma for polynomials and entire transcendental functions is proven.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Continuity of filled-in Julia sets and the closing lemma
Тип paper
DOI 10.1088/0951-7715/9/6/012
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 9
Первая страница 1599
Последняя страница 1608
Аффилиация Hartje Kriete; Mathematisches Institut, Georg-August Universität, Bunsenstrasse 3-5, 37073 Göttingen, Germany
Выпуск 6

Скрыть метаданые