Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jorma Lehtonen
Автор Risto Mikkonen
Автор Jaakko Paasi
Дата выпуска 2000-03-01
dc.description We propose that in an HTS application, stability is lost more likely because of a global increase in temperature caused by heat generation distributed over the whole coil than because of a local normal zone which starts to propagate. For consideration of stability in HTS magnets, we present a computational model based on the heat conduction equation coupled with Maxwell's equations, whereby analysis can be performed by using commercial software packages for computational electromagnetics and thermodynamics. For temperature distribution inside the magnet, we derive the magnetic field dependent effective values of thermal conductivity, specific heat, and heat generated by electromagnetic phenomena for the composite structure of the magnet, while cooling conditions and external heat sources are described as boundary conditions. Our model enables the magnet designer to estimate a safe level of the operation current before a thermal runaway. Finally, as examples, we present some calculations of the HTS magnet with ac to review the effects of slanted electric field-current density E (J ) characteristics and high critical temperature of HTS materials.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A numerical model for stability considerations in HTS magnets
Тип paper
DOI 10.1088/0953-2048/13/3/301
Electronic ISSN 1361-6668
Print ISSN 0953-2048
Журнал Superconductor Science and Technology
Том 13
Первая страница 251
Последняя страница 258
Аффилиация Jorma Lehtonen; Laboratory of Electromagnetics, Tampere University of Technology, PO Box 692, 33101 Tampere, Finland
Аффилиация Risto Mikkonen; Laboratory of Electromagnetics, Tampere University of Technology, PO Box 692, 33101 Tampere, Finland
Аффилиация Jaakko Paasi; Laboratory of Electromagnetics, Tampere University of Technology, PO Box 692, 33101 Tampere, Finland
Выпуск 3

Скрыть метаданые