Автор |
Thomas Rieth |
Автор |
Michael Schreiber |
Дата выпуска |
1998-02-02 |
dc.description |
We study the electronic eigenstates on two- and three-dimensional quasiperiodic lattices using a tight-binding Hamiltonian in the vertex model. In particular, we analyse how a quasiperiodic lattice influences the decay form and the self-similar structure of the wave functions. The investigation of the earlier-suggested power-law localization is performed by calculating participation numbers and the structural entropy of the wave function. We also present results for the multifractal analysis of the eigenstates by a standard box-counting method. The eigenstates of the two-dimensional Penrose lattice display multifractal character. In contrast, most eigenstates of the three-dimensional Amman-Kramer lattice are shown to be extended; localized states occur only in the band tails, where the spectrum appears to be fractal. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Numerical investigation of electronic wave functions in quasiperiodic lattices |
Тип |
paper |
DOI |
10.1088/0953-8984/10/4/008 |
Electronic ISSN |
1361-648X |
Print ISSN |
0953-8984 |
Журнал |
Journal of Physics: Condensed Matter |
Том |
10 |
Первая страница |
783 |
Последняя страница |
800 |
Аффилиация |
Thomas Rieth; Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany |
Аффилиация |
Michael Schreiber; Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany |
Выпуск |
4 |