Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Heike Emmerich
Автор Chaouqi Misbah
Автор Klaus Kassner
Автор Thomas Ihle
Дата выпуска 1999-12-13
dc.description We introduce a new numerical approach to step flow growth, making use of its analogies to dendritic growth. Concentrating on the situation close to the instability threshold of step growth, nonlinear evolutionary equations for the steps on a vicinal surface can be derived in a multiple-scale analysis. This approach retains the relevant nonlinearities sufficiently close to the threshold. Our simulations recover and visualize these findings. However, on the basis of our simulations we further report results on the behaviour far from the threshold. Step propagation is treated as a moving-boundary problem based on the Burton-Cabrera-Frank (Burton W K, Cabrera N and Frank F C 1951 Phil. Trans. R. Soc. A 243 299) model. Our method handles the problem in a fully dynamical manner without any quasistatic approximations. Furthermore, it allows for overhangs.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Vicinal surfaces: growth structures close to the instability threshold and far beyond
Тип paper
DOI 10.1088/0953-8984/11/49/315
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 11
Первая страница 9985
Последняя страница 9991
Аффилиация Heike Emmerich; Otto-von-Guericke University Magdeburg, D-3901 Magdeburg, Germany
Аффилиация Chaouqi Misbah; Otto-von-Guericke University Magdeburg, D-3901 Magdeburg, Germany
Аффилиация Klaus Kassner; Otto-von-Guericke University Magdeburg, D-3901 Magdeburg, Germany
Аффилиация Thomas Ihle; Otto-von-Guericke University Magdeburg, D-3901 Magdeburg, Germany
Выпуск 49

Скрыть метаданые