Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J Los
Автор P Bennema
Автор P H J van Dam
Автор W J P van Enckevort
Автор F A Hollander
Автор C N M Keulemans
Дата выпуска 2000-04-03
dc.description We present a continuum model for diffusion-limited non-dense growth. Our approach leads to a set of two coupled partial differential equations which describe the time evolution of the (spherically) averaged aggregation density and concentration of growth units in the liquid phase. For time-independent parameters the solution of the equations yields a constant (non-fractal) aggregation density. The model gives a phenomenological description of non-fractal unstable growth, e.g. non-fractal spherulitic growth, on a macroscopic scale in terms of a minimal number of parameters and can be used in combination with experimental data, such as the front velocity and the width of the growth front, for both a qualitative and quantitative interpretation of the growth process. The analytical solution of the equations in the diffusion-limited regime leads to simple relations involving the aggregation density and the velocity and width of the growth front. This allows for an easy quantitative analysis of experimental data.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A continuum model for non-dense growth
Тип paper
DOI 10.1088/0953-8984/12/13/325
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 12
Первая страница 3195
Последняя страница 3217
Выпуск 13

Скрыть метаданые