Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор I I Gegusin
Автор L I Leontieva
Дата выпуска 1990-07-02
dc.description A method assigned to solve exactly the Schrodinger equation with non-muffin-tin crystal potential is numerically tested. The approach is based on the Green function technique. It differs from the conventional multiple-scattering methods in that the wave field psi <sub>k</sub> is sought at some points within a cell rather than at the boundaries. The empty lattice and three-dimensional Mathieu problems are studied with the emphasis on convergence properties. Generally, the convergence is governed by three independent parameters, resulting as a consequence of the truncation of some infinite series, namely, the expansions of the Green function, potential and wavefunction psi <sub>k</sub> sought. It is numerically shown that, by increasing the three parameters mentioned, the calculated energy eigenvalues approach the exact ones.
Формат application.pdf
Издатель Institute of Physics Publishing
Название An exact band-structure method applied to the three-dimensional Mathieu problem
Тип paper
DOI 10.1088/0953-8984/2/26/005
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 2
Первая страница 5689
Последняя страница 5702
Аффилиация I I Gegusin; Inst. of Phys., Rostov State Univ., USSR
Аффилиация L I Leontieva; Inst. of Phys., Rostov State Univ., USSR
Выпуск 26

Скрыть метаданые