Автор |
S Fauve |
Автор |
O Thual |
Дата выпуска |
1990-12-01 |
dc.description |
The authors consider Ginzburg-Landau-type models for localized structures observed in the vicinity of subcritical bifurcations to cellular flows, where two metastable homogeneous states coexist in an interval range of the control parameter. A localized structure consists of a small region in the bifurcated state surrounded by the basic state. The authors show how non-variational effects, i.e. the absence of a free energy to minimize, can explain the stability of these structures, contrary to the case of droplets in first-order phase transitions. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Localized structures in cellular flows |
Тип |
paper |
DOI |
10.1088/0953-8984/2/S/074 |
Electronic ISSN |
1361-648X |
Print ISSN |
0953-8984 |
Журнал |
Journal of Physics: Condensed Matter |
Том |
2 |
Первая страница |
SA465 |
Последняя страница |
SA468 |
Аффилиация |
S Fauve; Ecole Normale Superieure de Lyon, France |
Аффилиация |
O Thual; Ecole Normale Superieure de Lyon, France |
Выпуск |
S |