Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор S Crampin
Автор J B A N van Hoof
Автор M Nekovee
Автор J E Inglesfield
Дата выпуска 1992-02-10
dc.description The authors extend the surface-embedded Green function technique for calculating the electronic structure of surfaces and interfaces by presenting a method for determining substrate embedding potentials which makes no approximations to the substrate potential. They first present an alternative derivation of the surface-embedded Green function method, to clarify the use of a planar surface in simulating embedding on a more complicated surface and illustrate this with rigorous tests. Considering the case of a region embedded on two surfaces, they determine the conditions under which the resulting Green function may itself be used as a substrate-embedding potential, and thereby derive a procedure for obtaining an embedding potential which makes no approximation to the substrate potential. In the case of a substrate with semi-infinite periodicity this reduces to a self-consistency relation, for which they describe a first-order iterative solution. Finally, a particularly efficiency scheme for obtaining local properties within a surface or interface region is outlined. This constitutes a full-potential solution to the one-electron Schrodinger equation for systems of two-dimensional periodicity, whose calculation time scales linearly with the number of atomic planes.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Full-potential embedding for surfaces and interfaces
Тип paper
DOI 10.1088/0953-8984/4/6/012
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 4
Первая страница 1475
Последняя страница 1488
Аффилиация S Crampin; Inst. fur Theor. Phys., Catholic Univ. of Nijmegen, Netherlands
Аффилиация J B A N van Hoof; Inst. fur Theor. Phys., Catholic Univ. of Nijmegen, Netherlands
Аффилиация M Nekovee; Inst. fur Theor. Phys., Catholic Univ. of Nijmegen, Netherlands
Аффилиация J E Inglesfield; Inst. fur Theor. Phys., Catholic Univ. of Nijmegen, Netherlands
Выпуск 6

Скрыть метаданые