Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор B Frank
Автор C Y Cheung
Дата выпуска 1994-05-16
dc.description It is shown analytically that the critical exponents for the 3D Ising model from a renormalized Hamiltonian treatment, given by Girvin, of the thermal averages appearing in an approximate difference equation formulation, are exactly those of the spherical model ( gamma =2, alpha =-1). These are compared to the values computed by Girvin: gamma approximately=1.78, alpha approximately=0.11, which do not satisfy scaling. It is also noted that the behaviour w( lambda ) approximately=W(1)+O(1- lambda )<sup>1/2</sup> for lambda approximately=1<sup>-</sup> is reproduced by the Chadi-Cohen method of computation of reciprocal lattice sums only if the criterion q<sub>i</sub><sup>2</sup><<1- lambda is met, where q<sub>i</sub> are the smallest special points brought in at the order of approximation considered.
Формат application.pdf
Издатель Institute of Physics Publishing
Название An analysis of critical exponents from a renormalized Hamiltonian method
Тип paper
DOI 10.1088/0953-8984/6/20/017
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 6
Первая страница 3781
Последняя страница 3784
Аффилиация B Frank; Dept. of Phys., Concordia Univ., Montreal, Que., Canada
Аффилиация C Y Cheung; Dept. of Phys., Concordia Univ., Montreal, Que., Canada
Выпуск 20

Скрыть метаданые