Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Felix M Izrailev
Автор Tsampikos Kottos
Автор G P Tsironis
Дата выпуска 1996-04-15
dc.description We study scaling properties of the localized eigenstates of the random dimer model in which pairs of local site energies are assigned at random in a one-dimensional disordered tight-binding model. We use both the transfer matrix method and the direct diagonalization of the Hamiltonian in order to find how the localization length of a finite sample scales with the localization length of the infinite system. We derive the scaling law for the localization length and show it to be related to scaling behaviour typical of uncorrelated band random matrix, Anderson and Lloyd models.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Scaling properties of the localization length in one-dimensional paired correlated binary alloys of finite size
Тип paper
DOI 10.1088/0953-8984/8/16/012
Electronic ISSN 1361-648X
Print ISSN 0953-8984
Журнал Journal of Physics: Condensed Matter
Том 8
Первая страница 2823
Последняя страница 2834
Выпуск 16

Скрыть метаданые