Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Anthony F Starace
Автор Siamak Shahabi
Дата выпуска 1980-01-01
dc.description A graphical procedure is presented for calculating first order transition matrices for a general (open-shell) atom. The first order transition matrix may be used to calculate matrix elements of a general one-body operator of rank λ in orbital space and σ in spin space. In the random phase approximation we obtain a set of N + N' coupled differential equations for N final state radial functions and N' initial state radial functions which completely determine the first order transition matrix for an atomic system having N final state channels. (The relation of N' to N is dependent on the atomic system studied.) These N + N' differential equations reduce to familiar forms in the following cases: (1) When initial state correlations are ignored, we obtain the N coupled differential equations of the Close-Coupling Approximation; (2) When the atom has only closed subshells we obtain N' = N and the 2N coupled differential equations are those obtained in the Chang-Fano version of the Random Phase Approximation.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A Graphical Method for Calculating First Order Transition Matrices for Open-Shell Atoms in the Random Phase Approximation
Тип paper
DOI 10.1088/0031-8949/21/3-4/023
Electronic ISSN 1402-4896
Print ISSN 0031-8949
Журнал Physica Scripta
Том 21
Первая страница 368
Последняя страница 372
Аффилиация Anthony F Starace; Behlen Laboratory of Physics, The University of Nebraska, Lincoln, Nebraska 68588, USA
Аффилиация Siamak Shahabi; Behlen Laboratory of Physics, The University of Nebraska, Lincoln, Nebraska 68588, USA
Выпуск 3-4

Скрыть метаданые