Автор |
Tang Xü-Bing |
Автор |
Fan Hong-Yi |
Дата выпуска |
2010-06-15 |
dc.description |
We find that the Fokker–Planck equation in complex variables can he conveniently solved in the context of bipartite entangled state representation and its relationship with SU(2) Lie algebraic generators' new realization {(1/4)[(Q<sub>1</sub> – Q<sub>2</sub>)<sup>2</sup> + (P<sub>1</sub> + P<sub>2</sub>)<sup>2</sup>], (1/4)[(Q<sub>1</sub> + Q<sub>2</sub>)<sup>2</sup> + (P<sub>1</sub> – P<sub>2</sub>)<sup>2</sup>], and – (i/2)(Q<sub>1</sub>P<sub>2</sub> + Q<sub>2</sub>P<sub>1</sub>)}, the quadratic combination of canonical operators. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
2010 Chinese Physical Society and IOP Publishing Ltd |
Название |
Complex-Variable Fokker–Planck Equation Solved in Entangled State Representation |
Тип |
paper |
DOI |
10.1088/0253-6102/53/6/11 |
Electronic ISSN |
1572-9494 |
Print ISSN |
0253-6102 |
Журнал |
Communications in Theoretical Physics |
Том |
53 |
Первая страница |
1049 |
Последняя страница |
1052 |
Выпуск |
6 |