Автор |
Peter Hübner |
Дата выпуска |
2001-04-21 |
dc.description |
This is the third paper in a series describing a numerical implementation of the conformal Einstein equation. This paper describes a scheme to calculate (three-)dimensional data for the conformal field equations from a set of free functions. The actual implementation depends on the topology of the spacetime. We discuss the implementation and exemplary calculations for data leading to spacetimes with one spherical null infinity (asymptotically Minkowski) and for data leading to spacetimes with two toroidal null infinities (asymptotically A3). We also outline the (technical) modifications of the implementation needed to calculate data for spacetimes with two and more spherical null infinities (asymptotically Schwarzschild and asymptotically multiple black holes). |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Numerical calculation of conformally smooth hyperboloidal data |
Тип |
paper |
DOI |
10.1088/0264-9381/18/8/302 |
Electronic ISSN |
1361-6382 |
Print ISSN |
0264-9381 |
Журнал |
Classical and Quantum Gravity |
Том |
18 |
Первая страница |
1421 |
Последняя страница |
1440 |
Аффилиация |
Peter Hübner; Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany |
Выпуск |
8 |