Автор |
Isabel G Dotti |
Автор |
Anna Fino |
Дата выпуска |
2002-02-07 |
dc.description |
We study hyperKähler torsion (HKT) structures on nilpotent Lie groups and on associated nilmanifolds. We show three weak HKT structures on <sup>8</sup> which are homogeneous with respect to extensions of Heisenberg-type Lie groups. The corresponding hypercomplex structures are of a special kind called Abelian. We prove that on any 2-step nilpotent Lie group all invariant HKT structures arise from Abelian hypercomplex structures. Furthermore, we use a correspondence between Abelian hypercomplex structures and subspaces of p(n) to produce continuous families of compact and noncompact manifolds carrying non-isometric HKT structures. Finally, geometrical properties of invariant HKT structures on 2-step nilpotent Lie groups are obtained. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
HyperKähler torsion structures invariant by nilpotent Lie groups |
Тип |
paper |
DOI |
10.1088/0264-9381/19/3/309 |
Electronic ISSN |
1361-6382 |
Print ISSN |
0264-9381 |
Журнал |
Classical and Quantum Gravity |
Том |
19 |
Первая страница |
551 |
Последняя страница |
562 |
Выпуск |
3 |