Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Isabel G Dotti
Автор Anna Fino
Дата выпуска 2002-02-07
dc.description We study hyperKähler torsion (HKT) structures on nilpotent Lie groups and on associated nilmanifolds. We show three weak HKT structures on <sup>8</sup> which are homogeneous with respect to extensions of Heisenberg-type Lie groups. The corresponding hypercomplex structures are of a special kind called Abelian. We prove that on any 2-step nilpotent Lie group all invariant HKT structures arise from Abelian hypercomplex structures. Furthermore, we use a correspondence between Abelian hypercomplex structures and subspaces of p(n) to produce continuous families of compact and noncompact manifolds carrying non-isometric HKT structures. Finally, geometrical properties of invariant HKT structures on 2-step nilpotent Lie groups are obtained.
Формат application.pdf
Издатель Institute of Physics Publishing
Название HyperKähler torsion structures invariant by nilpotent Lie groups
Тип paper
DOI 10.1088/0264-9381/19/3/309
Electronic ISSN 1361-6382
Print ISSN 0264-9381
Журнал Classical and Quantum Gravity
Том 19
Первая страница 551
Последняя страница 562
Выпуск 3

Скрыть метаданые