Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Soma Mukherjee
Дата выпуска 2004-10-21
dc.description This study describes algorithms developed for modelling interferometric noise in a realistic manner, i.e. incorporating non-stationarity that can be seen in the data from the present generation of interferometers. The noise model is based on individual component models (ICM) with the application of auto regressive moving average (ARMA) models. The data obtained from the model are vindicated by standard statistical tests, e.g. the KS test and Akaike minimum criterion. The results indicate a very good fit. The advantage of using ARMA for ICMs is that the model parameters can be controlled and hence injection and efficiency studies can be conducted in a more controlled environment. This realistic non-stationary noise generator is intended to be integrated within the data monitoring tool framework.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Interferometric data modelling: issues in realistic data generation
Тип paper
DOI 10.1088/0264-9381/21/20/021
Electronic ISSN 1361-6382
Print ISSN 0264-9381
Журнал Classical and Quantum Gravity
Том 21
Первая страница S1783
Последняя страница S1792
Аффилиация Soma Mukherjee; Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA
Выпуск 20

Скрыть метаданые