Автор |
M A Manna |
Автор |
A Neveu |
Дата выпуска |
2001-08-01 |
dc.description |
A new nonlinear equation governing asymptotic dynamics of short surface waves is derived by using a short-wave perturbative expansion in an appropriate reduction of the Euler equations. This reduction corresponds to a Green-Naghdi-type equation with a cinematic discontinuity in the surface. The physical system under consideration is an ideal fluid (inviscid, incompressible and without surface tension) in which takes place a steady surface motion. An ideal surface wind on a lake which produces surface flow is a physical environment conducive to the above-mentioned phenomenon. The equation obtained admits peakon solutions with amplitude, velocity and width in interrelation. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Short-wave dynamics in the Euler equations |
Тип |
paper |
DOI |
10.1088/0266-5611/17/4/317 |
Electronic ISSN |
1361-6420 |
Print ISSN |
0266-5611 |
Журнал |
Inverse Problems |
Том |
17 |
Первая страница |
855 |
Последняя страница |
861 |
Аффилиация |
M A Manna; Physique Mathématique et Théorique, CNRS-UMR5825, Université de Montpellier II, 34095 Montpellier, France |
Аффилиация |
A Neveu; Physique Mathématique et Théorique, CNRS-UMR5825, Université de Montpellier II, 34095 Montpellier, France |
Выпуск |
4 |