Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор M A Manna
Автор A Neveu
Дата выпуска 2001-08-01
dc.description A new nonlinear equation governing asymptotic dynamics of short surface waves is derived by using a short-wave perturbative expansion in an appropriate reduction of the Euler equations. This reduction corresponds to a Green-Naghdi-type equation with a cinematic discontinuity in the surface. The physical system under consideration is an ideal fluid (inviscid, incompressible and without surface tension) in which takes place a steady surface motion. An ideal surface wind on a lake which produces surface flow is a physical environment conducive to the above-mentioned phenomenon. The equation obtained admits peakon solutions with amplitude, velocity and width in interrelation.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Short-wave dynamics in the Euler equations
Тип paper
DOI 10.1088/0266-5611/17/4/317
Electronic ISSN 1361-6420
Print ISSN 0266-5611
Журнал Inverse Problems
Том 17
Первая страница 855
Последняя страница 861
Аффилиация M A Manna; Physique Mathématique et Théorique, CNRS-UMR5825, Université de Montpellier II, 34095 Montpellier, France
Аффилиация A Neveu; Physique Mathématique et Théorique, CNRS-UMR5825, Université de Montpellier II, 34095 Montpellier, France
Выпуск 4

Скрыть метаданые