Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Allahverdyan, A. E.
Автор Ver Steeg, G.
Автор Galstyan, A.
Дата выпуска 2010-04-01
dc.description We study the problem of graph partitioning, or clustering, in sparse networks with prior information about the clusters. Specifically, we assume that for a fraction ρ of the nodes their true cluster assignments are known in advance. This can be understood as a semi-supervised version of clustering, in contrast to unsupervised clustering where the only available information is the graph structure. In the unsupervised case, it is known that there is a threshold of the inter-cluster connectivity beyond which clusters cannot be detected. Here we study the impact of the prior information on the detection threshold, and show that even minute (but generic) values of ρ>0 shift the threshold downwards to its lowest possible value. For weighted graphs we show that a small semi-supervising can be used for a non-trivial definition of communities.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт Europhysics Letters Association
Название Community detection with and without prior information
Тип lett
DOI 10.1209/0295-5075/90/18002
Electronic ISSN 1286-4854
Print ISSN 0295-5075
Журнал EPL (Europhysics Letters)
Том 90
Первая страница 18002
Последняя страница 18007
Аффилиация Allahverdyan, A. E.; Yerevan Physics Institute - Alikhanian Brothers Street 2, Yerevan 375036, Armenia
Аффилиация Ver Steeg, G.; Information Sciences Institute, University of Southern California - Marina del Rey, CA 90292, USA
Аффилиация Galstyan, A.; Information Sciences Institute, University of Southern California - Marina del Rey, CA 90292, USA
Выпуск 1

Скрыть метаданые