Автор |
Horvatic, D. |
Автор |
Stanley, H. E. |
Автор |
Podobnik, B. |
Дата выпуска |
2011-04-01 |
dc.description |
Noisy signals in many real-world systems display long-range autocorrelations and long-range cross-correlations. Due to periodic trends, these correlations are difficult to quantify. We demonstrate that one can accurately quantify power-law cross-correlations between different simultaneously recorded time series in the presence of highly non-stationary sinusoidal and polynomial overlying trends by using the new technique of detrended cross-correlation analysis with varying order ℓ of the polynomial. To demonstrate the utility of this new method —which we call DCCA-ℓ(n), where n denotes the scale— we apply it to meteorological data. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
Europhysics Letters Association |
Название |
Detrended cross-correlation analysis for non-stationary time series with periodic trends |
Тип |
lett |
DOI |
10.1209/0295-5075/94/18007 |
Electronic ISSN |
1286-4854 |
Print ISSN |
0295-5075 |
Журнал |
EPL (Europhysics Letters) |
Том |
94 |
Первая страница |
18007 |
Последняя страница |
18012 |
Аффилиация |
Horvatic, D.; Department of Physics, Faculty of Natural Sciences, University of Zagreb - 10000 Zagreb, Croatia |
Аффилиация |
Stanley, H. E.; Center for Polymer Studies and Department of Physics, Boston University - Boston, MA 02215, USA |
Аффилиация |
Podobnik, B.; Center for Polymer Studies and Department of Physics, Boston University - Boston, MA 02215, USA; Department of Physics, Faculty of Civil Engineering, University of Rijeka - 51000 Rijeka, Croatia; Zagreb School of Economics and Management - 10000 Zagreb, Croatia |
Выпуск |
1 |