Автор |
Carl M Bender |
Автор |
Qinghai Wang |
Дата выпуска |
2001-04-20 |
dc.description |
It has been conjectured that for ε≥0 the entire spectrum of the non-Hermitian PT-symmetric Hamiltonian H<sub>N</sub> = p<sup>2</sup> + x<sup>2</sup>(ix)<sup>ε</sup>, where N = 2 + ε, is real. Strong evidence for this conjecture for the special case N = 3 was provided in a recent paper by Mezincescu (Mezincescu G A 2000 J. Phys. A: Math. Gen. 33 4911) in which the spectral zeta function Z<sub>3</sub>(1) for the Hamiltonian H<sub>3</sub> = p<sup>2</sup> + ix<sup>3</sup> was calculated exactly. Here, the calculation of Mezincescu is generalized from the special case N = 3 to the region of all N≥2 (ε≥0) and the exact spectral zeta function Z<sub>N</sub>(1) for H<sub>N</sub> is obtained. Using Z<sub>N</sub>(1) it is shown that to extremely high precision (about three parts in 10<sup>18</sup>) the spectrum of H<sub>N</sub> for other values of N such as N = 4 is entirely real. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Comment on a recent paper by Mezincescu |
Тип |
note |
DOI |
10.1088/0305-4470/34/15/401 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
34 |
Первая страница |
3325 |
Последняя страница |
3328 |
Аффилиация |
Carl M Bender; Department of Physics, Washington University, St Louis, MO 63130, USA |
Аффилиация |
Qinghai Wang; Department of Physics, Washington University, St Louis, MO 63130, USA |
Выпуск |
15 |