Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Stephen L Adler
Автор Todd A Brun
Дата выпуска 2001-06-15
dc.description A number of authors have proposed stochastic versions of the Schrödinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. Here we discuss two directions for the generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making several specializations there is an infinity of possible stochastic Schrödinger equations for which state vector collapse is provable. Second, we explore the problem of formulating a relativistic stochastic Schrödinger equation, using a manifestly covariant equation for a quantum field system based on the interaction picture of Tomonaga and Schwinger. The stochastic noise term in this equation can couple to any local scalar density that commutes with the interaction energy density, and leads to collapse onto spatially localized eigenstates. However, as found in a similar model by Pearle, the equation predicts an infinite rate of energy nonconservation proportional to δ<sup>3</sup>(), arising from the local double commutator in the drift term.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Generalized stochastic Schrödinger equations for state vector collapse
Тип paper
DOI 10.1088/0305-4470/34/23/302
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 34
Первая страница 4797
Последняя страница 4809
Аффилиация Stephen L Adler; Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
Аффилиация Todd A Brun; Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
Выпуск 23

Скрыть метаданые