Автор |
Christian Mercat |
Автор |
Paul A Pearce |
Дата выпуска |
2001-07-27 |
dc.description |
We study integrable and conformal boundary conditions for parafermions on a cylinder. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with negative spectral parameter. The conformal boundary conditions labelled by (a,m)∈(G,<sub>2k</sub>) are identified with associated integrable lattice boundary conditions labelled by (r,a)∈(A<sub>g-2</sub>,G) where g is the Coxeter number of the A-D-E graph G. We obtain analytically the boundary free energies, present general expressions for the parafermion cylinder partition functions and confirm these results by numerical calculations. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Integrable and conformal boundary conditions for <sub>k</sub> parafermions on a cylinder |
Тип |
paper |
DOI |
10.1088/0305-4470/34/29/302 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
34 |
Первая страница |
5751 |
Последняя страница |
5771 |
Аффилиация |
Christian Mercat; Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia |
Аффилиация |
Paul A Pearce; Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia |
Выпуск |
29 |