Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Christian Mercat
Автор Paul A Pearce
Дата выпуска 2001-07-27
dc.description We study integrable and conformal boundary conditions for parafermions on a cylinder. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with negative spectral parameter. The conformal boundary conditions labelled by (a,m)∈(G,<sub>2k</sub>) are identified with associated integrable lattice boundary conditions labelled by (r,a)∈(A<sub>g-2</sub>,G) where g is the Coxeter number of the A-D-E graph G. We obtain analytically the boundary free energies, present general expressions for the parafermion cylinder partition functions and confirm these results by numerical calculations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Integrable and conformal boundary conditions for <sub>k</sub> parafermions on a cylinder
Тип paper
DOI 10.1088/0305-4470/34/29/302
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 34
Первая страница 5751
Последняя страница 5771
Аффилиация Christian Mercat; Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
Аффилиация Paul A Pearce; Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
Выпуск 29

Скрыть метаданые