Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Peter Leoni
Автор Carlo Vanderzande
Автор Luc Vandeurzen
Дата выпуска 2001-11-23
dc.description We study a model of two self-avoiding walks that are allowed to cross. An attractive energy is associated with each crossing. We present a number of exact results on the free energy of this model and show the existence of a zipping temperature, below which the number of crossings becomes macroscopic. We give heuristic arguments which show that in d 2 and d 3 this zipping transition occurs at infinite temperature. Exact enumeration and Monte Carlo simulations on the square lattice strongly support this conjecture and lead to a precise value for the crossover exponent.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Zipping transition in a model of two crosslinked polymers
Тип paper
DOI 10.1088/0305-4470/34/46/302
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 34
Первая страница 9777
Последняя страница 9791
Выпуск 46

Скрыть метаданые