Автор | Peter Leoni |
Автор | Carlo Vanderzande |
Автор | Luc Vandeurzen |
Дата выпуска | 2001-11-23 |
dc.description | We study a model of two self-avoiding walks that are allowed to cross. An attractive energy is associated with each crossing. We present a number of exact results on the free energy of this model and show the existence of a zipping temperature, below which the number of crossings becomes macroscopic. We give heuristic arguments which show that in d 2 and d 3 this zipping transition occurs at infinite temperature. Exact enumeration and Monte Carlo simulations on the square lattice strongly support this conjecture and lead to a precise value for the crossover exponent. |
Формат | application.pdf |
Издатель | Institute of Physics Publishing |
Название | Zipping transition in a model of two crosslinked polymers |
Тип | paper |
DOI | 10.1088/0305-4470/34/46/302 |
Print ISSN | 0305-4470 |
Журнал | Journal of Physics A: Mathematical and General |
Том | 34 |
Первая страница | 9777 |
Последняя страница | 9791 |
Выпуск | 46 |