Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Julio H Toloza
Дата выпуска 2001-02-16
dc.description We study the behaviour of truncated Rayleigh-Schrödinger series for the low-lying eigenvalues of the one-dimensional, time-independent Schrödinger equation, in the semiclassical limit ℏ→0. Under certain hypotheses on the potential V(x), we prove that for any given small ℏ>0 there is an optimal truncation of the series for the approximate eigenvalues, such that the difference between an approximate and exact eigenvalue is smaller than exp (-C/ℏ) for some positive constant C. We also prove the analogous results concerning the eigenfunctions.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Exponentially accurate error estimates of quasiclassical eigenvalues
Тип paper
DOI 10.1088/0305-4470/34/6/310
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 34
Первая страница 1203
Последняя страница 1218
Аффилиация Julio H Toloza; Department of Physics and Center for Statistical Mechanics and Mathematical Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435, USA
Выпуск 6

Скрыть метаданые