Автор |
Julio H Toloza |
Дата выпуска |
2001-02-16 |
dc.description |
We study the behaviour of truncated Rayleigh-Schrödinger series for the low-lying eigenvalues of the one-dimensional, time-independent Schrödinger equation, in the semiclassical limit ℏ→0. Under certain hypotheses on the potential V(x), we prove that for any given small ℏ>0 there is an optimal truncation of the series for the approximate eigenvalues, such that the difference between an approximate and exact eigenvalue is smaller than exp (-C/ℏ) for some positive constant C. We also prove the analogous results concerning the eigenfunctions. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Exponentially accurate error estimates of quasiclassical eigenvalues |
Тип |
paper |
DOI |
10.1088/0305-4470/34/6/310 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
34 |
Первая страница |
1203 |
Последняя страница |
1218 |
Аффилиация |
Julio H Toloza; Department of Physics and Center for Statistical Mechanics and Mathematical Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435, USA |
Выпуск |
6 |