Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Madan Lal Mehta
Дата выпуска 2002-01-25
dc.description Ercolani and McLaughlin have recently shown that the zeros of the bi-orthogonal polynomials with the weight w(x, y) exp[−(V<sub>1</sub>(x) + V<sub>2</sub>(y) + 2cxy)/2], relevant to a model of two coupled Hermitian matrices, are real and simple. We show that their argument applies to the more general case of the weight (w<sub>1</sub> * w<sub>2</sub> * ... * w<sub>j</sub>)(x, y), a convolution of several weights of the same form. This general case is relevant to a model of several Hermitian matrices coupled in a chain. Their argument also works for more general weights such as W(x, y) e<sup>−x−y</sup>/(x + y), 0 ≤ x, y < ∞, and for a convolution of several such weights.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Zeros of some bi-orthogonal polynomials
Тип paper
DOI 10.1088/0305-4470/35/3/305
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 35
Первая страница 517
Последняя страница 525
Аффилиация Madan Lal Mehta; CEA/Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex, France
Выпуск 3

Скрыть метаданые