Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J Ramírez
Автор M S Bruzón
Автор C Muriel
Автор M L Gandarias
Дата выпуска 2003-02-07
dc.description In this paper, the complete Lie group classification of a (2 + 1)-dimensional integrable Schwarzian Korteweg–de Vries equation is obtained. The reduction to systems of partial differential equations in (1 + 1) dimension is derived from the optimal system of subalgebras. The invariance study of these systems leads to second-order ODEs. These ODEs provide several classes of solutions; all of them are expressible in terms of known functions, some of them are expressible in terms of the second and third Painlevé transcendents. The corresponding solutions of the (2 + 1)-dimensional equation involve up to three arbitrary smooth functions. They even appear in the form ρ(z)f(x + φ(t)). Consequently, the solutions exhibit a rich variety of qualitative behaviour. Indeed, by making appropriate choices for the arbitrary functions, we are able to exhibit large families of solitary waves, coherent structures and different types of bound states.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The Schwarzian Korteweg–de Vries equation in (2 + 1) dimensions
Тип paper
DOI 10.1088/0305-4470/36/5/319
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 36
Первая страница 1467
Последняя страница 1484
Аффилиация J Ramírez; Departamento de Matemáticas, Universidad de Cádiz, PO Box 40, 11510, Puerto Real, Cádiz, Spain
Аффилиация M S Bruzón; Departamento de Matemáticas, Universidad de Cádiz, PO Box 40, 11510, Puerto Real, Cádiz, Spain
Аффилиация C Muriel; Departamento de Matemáticas, Universidad de Cádiz, PO Box 40, 11510, Puerto Real, Cádiz, Spain
Аффилиация M L Gandarias; Departamento de Matemáticas, Universidad de Cádiz, PO Box 40, 11510, Puerto Real, Cádiz, Spain
Выпуск 5

Скрыть метаданые