Автор |
Roger Haydock |
Автор |
C M M Nex |
Автор |
Geoffrey Wexler |
Дата выпуска |
2004-01-09 |
dc.description |
A real vector space combined with an inverse (involution) for vectors is sufficient to define a vector continued fraction whose parameters consist of vector shifts and changes of scale. The choice of sign for different components of the vector inverse permits construction of vector analogues of the Jacobi continued fraction. These vector Jacobi fractions are related to vector and scalar-valued polynomial functions of the vectors, which satisfy recurrence relations similar to those of orthogonal polynomials. The vector Jacobi fraction has strong convergence properties which are demonstrated analytically, and illustrated numerically. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
2004 IOP Publishing Ltd |
Название |
Vector continued fractions using a generalized inverse |
Тип |
paper |
DOI |
10.1088/0305-4470/37/1/011 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
37 |
Первая страница |
161 |
Последняя страница |
172 |
Выпуск |
1 |