Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Roger Haydock
Автор C M M Nex
Автор Geoffrey Wexler
Дата выпуска 2004-01-09
dc.description A real vector space combined with an inverse (involution) for vectors is sufficient to define a vector continued fraction whose parameters consist of vector shifts and changes of scale. The choice of sign for different components of the vector inverse permits construction of vector analogues of the Jacobi continued fraction. These vector Jacobi fractions are related to vector and scalar-valued polynomial functions of the vectors, which satisfy recurrence relations similar to those of orthogonal polynomials. The vector Jacobi fraction has strong convergence properties which are demonstrated analytically, and illustrated numerically.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Vector continued fractions using a generalized inverse
Тип paper
DOI 10.1088/0305-4470/37/1/011
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 161
Последняя страница 172
Выпуск 1

Скрыть метаданые