Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор David Krejcirik
Автор Rafael Tiedra de Aldecoa
Дата выпуска 2004-05-21
dc.description We study the nature of the essential spectrum of the Dirichlet Laplacian in tubes about infinite curves embedded in Euclidean spaces. Under suitable assumptions about the decay of curvatures at infinity, we prove the absence of singular continuous spectrum and state properties of possible embedded eigenvalues. The argument is based on the Mourre conjugate operator method developed for acoustic multistratified domains by Benbernou (1998 J. Math. Anal. Appl. 225 440–60) and Dermenjian et al (1998 Commun. Partial Differ. Equ. 23 141–69). As a technical preliminary, we carry out a spectral analysis for Schrödinger-type operators in straight Dirichlet tubes. We also apply the result to the strips embedded in abstract surfaces.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название The nature of the essential spectrum in curved quantum waveguides
Тип paper
DOI 10.1088/0305-4470/37/20/013
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 5449
Последняя страница 5466
Выпуск 20

Скрыть метаданые