Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J D FinleyIII
Автор John K McIver
Дата выпуска 2004-06-04
dc.description We determine the (non-Abelian) algebra of generalized symmetries for the SDiff(2)Toda equation, a pde for a single function of three independent variables, the solutions of which determine self-dual, vacuum solutions of the Einstein field equations. This algebra is a realization of two copies of the abstract algebra SDiff(2), along with an additional pair of elements that have derivation-like properties on both of the copies. It contains as a subalgebra the doubly-infinite, Abelian algebra, equivalent to the infinite hierarchy of higher flows found by Takasaki and Takebe. An infinite prolongation of the jet bundle for the original pde, to include all the variables allowed in their hierarchy, is required for the presentation of this generalization. Because these symmetries have non-zero commutators, they generate a recursion relation, allowing the generation and description of the entire algebra.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Non-Abelian infinite algebra of generalized symmetries for the SDiff(2)Toda equation
Тип paper
DOI 10.1088/0305-4470/37/22/009
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 5825
Последняя страница 5847
Аффилиация J D FinleyIII; University of New Mexico, Albuquerque, NM 87131, USA
Аффилиация John K McIver; University of New Mexico, Albuquerque, NM 87131, USA
Выпуск 22

Скрыть метаданые