Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kazuyuki Tanaka
Автор Hayaru Shouno
Автор Masato Okada
Автор D M Titterington
Дата выпуска 2004-09-10
dc.description We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing
Тип paper
DOI 10.1088/0305-4470/37/36/007
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 8675
Последняя страница 8695
Выпуск 36

Скрыть метаданые