Автор |
I Pérez Castillo |
Автор |
B Wemmenhove |
Автор |
J P L Hatchett |
Автор |
A C C Coolen |
Автор |
N S Skantzos |
Автор |
T Nikoletopoulos |
Дата выпуска |
2004-09-17 |
dc.description |
We study the influence of network topology on retrieval properties of recurrent neural networks, using replica techniques for dilute systems. The theory is presented for a network with an arbitrary degree distribution p(k) and applied to power-law distributions p(k) ∼ k<sup>−γ</sup>, i.e. to neural networks on scale-free graphs. A bifurcation analysis identifies phase boundaries between the paramagnetic phase and either a retrieval phase or a spin-glass phase. Using a population dynamics algorithm, the retrieval overlap and spin-glass order parameters may be calculated throughout the phase diagram. It is shown that there is an enhancement of the retrieval properties compared with a Poissonian random graph. We compare our findings with simulations. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
2004 IOP Publishing Ltd |
Название |
Analytic solution of attractor neural networks on scale-free graphs |
Тип |
paper |
DOI |
10.1088/0305-4470/37/37/002 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
37 |
Первая страница |
8789 |
Последняя страница |
8799 |
Выпуск |
37 |