Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор I Pérez Castillo
Автор B Wemmenhove
Автор J P L Hatchett
Автор A C C Coolen
Автор N S Skantzos
Автор T Nikoletopoulos
Дата выпуска 2004-09-17
dc.description We study the influence of network topology on retrieval properties of recurrent neural networks, using replica techniques for dilute systems. The theory is presented for a network with an arbitrary degree distribution p(k) and applied to power-law distributions p(k) ∼ k<sup>−γ</sup>, i.e. to neural networks on scale-free graphs. A bifurcation analysis identifies phase boundaries between the paramagnetic phase and either a retrieval phase or a spin-glass phase. Using a population dynamics algorithm, the retrieval overlap and spin-glass order parameters may be calculated throughout the phase diagram. It is shown that there is an enhancement of the retrieval properties compared with a Poissonian random graph. We compare our findings with simulations.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Analytic solution of attractor neural networks on scale-free graphs
Тип paper
DOI 10.1088/0305-4470/37/37/002
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 8789
Последняя страница 8799
Выпуск 37

Скрыть метаданые