Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор I Pérez Castillo
Автор N S Skantzos
Дата выпуска 2004-10-01
dc.description We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little–Hopfield model). We solve this model within replica symmetry, and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetic transition lines of our phase diagram are identical to those of sequential dynamics. The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название The Little–Hopfield model on a sparse random graph
Тип paper
DOI 10.1088/0305-4470/37/39/003
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 9087
Последняя страница 9099
Аффилиация I Pérez Castillo; Institute for Theoretical Physics, Celestijnenlaan 200D, Katholieke Universiteit Leuven, Leuven B-3001, Belgium
Аффилиация N S Skantzos; Institute for Theoretical Physics, Celestijnenlaan 200D, Katholieke Universiteit Leuven, Leuven B-3001, Belgium
Выпуск 39

Скрыть метаданые