Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Alejandro M F Rivas
Автор Alfredo M Ozorio de Almeida
Дата выпуска 2002-05-01
dc.description We develop a semiclassical approximation for the spectral Wigner and Husimi functions in the neighbourhood of a classically unstable periodic orbit of chaotic 2-D maps. The prediction of hyperbolic fringes for the Wigner function, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. The characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. The corresponding Husimi function dampens these fringes with a Gaussian envelope centred on the periodic point. Even though the hyperbolic structure is then barely perceptible, more periodic points stand out due to the weakened interference.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Hyperbolic scar patterns in phase space
Тип paper
DOI 10.1088/0951-7715/15/3/309
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 15
Первая страница 681
Последняя страница 693
Выпуск 3

Скрыть метаданые