Автор |
Alejandro M F Rivas |
Автор |
Alfredo M Ozorio de Almeida |
Дата выпуска |
2002-05-01 |
dc.description |
We develop a semiclassical approximation for the spectral Wigner and Husimi functions in the neighbourhood of a classically unstable periodic orbit of chaotic 2-D maps. The prediction of hyperbolic fringes for the Wigner function, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. The characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. The corresponding Husimi function dampens these fringes with a Gaussian envelope centred on the periodic point. Even though the hyperbolic structure is then barely perceptible, more periodic points stand out due to the weakened interference. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Hyperbolic scar patterns in phase space |
Тип |
paper |
DOI |
10.1088/0951-7715/15/3/309 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
15 |
Первая страница |
681 |
Последняя страница |
693 |
Выпуск |
3 |