Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Zhao, Yulin
Дата выпуска 2011-09-01
dc.description This paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of quadratic codimension-four centres Q<sub>4</sub>. Gavrilov and Iliev set an upper bound of eight for the number of limit cycles produced from the period annuli around the centre. Based on Gavrilov–Iliev's proof, we prove in this paper that the perturbed system has at most five limit cycles which emerge from the period annuli around the centre. We also show that there exists a perturbed system with three limit cycles produced by the period annuli of Q<sub>4</sub>.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2011 IOP Publishing Ltd & London Mathematical Society
Название On the number of limit cycles in quadratic perturbations of quadratic codimension-four centres
Тип paper
DOI 10.1088/0951-7715/24/9/007
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 24
Первая страница 2505
Последняя страница 2522
Последняя страница 2522
Аффилиация Zhao, Yulin; Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
Выпуск 9

Скрыть метаданые