Автор |
Zhao, Yulin |
Дата выпуска |
2011-09-01 |
dc.description |
This paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of quadratic codimension-four centres Q<sub>4</sub>. Gavrilov and Iliev set an upper bound of eight for the number of limit cycles produced from the period annuli around the centre. Based on Gavrilov–Iliev's proof, we prove in this paper that the perturbed system has at most five limit cycles which emerge from the period annuli around the centre. We also show that there exists a perturbed system with three limit cycles produced by the period annuli of Q<sub>4</sub>. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
2011 IOP Publishing Ltd & London Mathematical Society |
Название |
On the number of limit cycles in quadratic perturbations of quadratic codimension-four centres |
Тип |
paper |
DOI |
10.1088/0951-7715/24/9/007 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
24 |
Первая страница |
2505 |
Последняя страница |
2522 |
Последняя страница |
2522 |
Аффилиация |
Zhao, Yulin; Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China |
Выпуск |
9 |