Close contact
Demming, Anna; Demming, Anna; Publishing Editor, IOP Publishing, Bristol, UK
Журнал:
Nanotechnology
Дата:
2010-07-02
Аннотация:
The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact.The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative means to produce nanoscale device elements, such as carbon nanotube transistors [5] and high-density memory crossbar circuits [6].Recently, the use of scanning tunnelling microscopes has broached a new field of research, which is currently attracting enormous interest—single molecule detection. In issue 25 of Nanotechnology researchers in Houston reported unprecedented sensitivities using localized surface plasmon resonance shifts of gold bipyramids to detect concentrations of substances down to the single molecule level [7]. In issue 26 a collaboration of researchers from the US and Czech Republic describe a different approach, namely tunnelling recognition. In their topical review they describe hydrogen-bond mediated tunnelling and the associated experimental methods that facilitate the detection of single molecules in a tunnel junction using chemically functionalized electrodes [8].The nanoworld depicted by scanning probe microgaphs over 20 years ago may have looked as extraterrestrial as any science fiction generated alien terrain, but though study and analysis these nano-landscapes have become significantly less alien territory. The work so far to unveil the intricacies of electronic contact has been a story of progress in investigating this new territory and manipulating the mechanisms that govern it to formulate new devices and delve deeper into phenomena at the nanoscale.References[1] Binning G, Rohrer H, Gerber Ch and Weibel E 1982 Phys. Rev. Lett. 49 57–61[2] X D Cui, X Zarate, J Tomfohr, O F Sankey, A Primak, A L Moore, T A Moore, D Gust, G~Harris and S M Lindsay 2002 Nanotechnology 13 5–14[3] Martin C A, van Ruitenbeek J M and van der Zant S J H 2010 Nanotechnology 21 265201[4] Davis J J and Hanyu Y 2010 Nanotechnology 21 265302[5] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49–52[6] Chen Y, Jung G-Y, Ohlberg D A A, Li X, Stewart D R, Jeppesen J O, Nielsen K A, Stoddart J F and Williams R S 2003 Nanotechnology 14 462–8[7] Mayer K M, Hao F, Lee S, Nordlander P and Hafner J H 2010 Nanotechnology 21 255503[8] Lindsay S, He J, Sankey O, Hapala P, Jelinek P, Zhang P, Chang S and Huang S 2010 Nanotechnology 21 262001
72.41Кб