Автор |
Jean Thierry-Mieg |
Дата выпуска |
2006-06-01 |
dc.description |
In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Chiral-Yang-Mills theory, non commutative differential geometry, and the need for a Lie super-algebra |
Тип |
paper |
DOI |
10.1088/1126-6708/2006/06/038 |
Electronic ISSN |
1029- 8479 |
Print ISSN |
1126-6708 |
Журнал |
Journal of High Energy Physics |
Том |
2006 |
Первая страница |
38 |
Последняя страница |
038 |
Выпуск |
06 |