Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jarah Evslin
Автор Stanislav Kuperstein
Дата выпуска 2007-04-01
dc.description The conifold is a cone over the space T<sup>1,1</sup>, which is known to be topologically S<sup>2</sup> × S<sup>3</sup>. The coordinates used in the literature describe a sphere-bundle which can be proven to be topologically trivializable. We provide an explicit trivialization of this bundle, with simultaneous global coordinates for both spheres. Using this trivialization we are able to describe the topology of the base of several infinite families of chiral and non-chiral orbifolds of the conifold. We demonstrate that in each case the 2nd Betti number of the base matches the number of independent ranks in the dual quiver gauge theory.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Trivializing and orbifolding the conifold's base
Тип paper
DOI 10.1088/1126-6708/2007/04/001
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 2007
Первая страница 1
Последняя страница 001
Аффилиация Jarah Evslin; Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B–1050 Bruxelles, Belgium
Аффилиация Stanislav Kuperstein; Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B–1050 Bruxelles, Belgium
Выпуск 04

Скрыть метаданые