Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Christian Sämann
Дата выпуска 2008-02-01
dc.description We describe a construction of fuzzy spaces which approximate projective toric varieties. The construction uses the canonical embedding of such varieties into a complex projective space: The algebra of fuzzy functions on a toric variety is obtained by a restriction of the fuzzy algebra of functions on the complex projective space appearing in the embedding. We give several explicit examples for this construction; in particular, we present fuzzy weighted projective spaces as well as fuzzy Hirzebruch and del Pezzo surfaces. As our construction is actually suited for arbitrary subvarieties of complex projective spaces, one can easily obtain large classes of fuzzy Calabi-Yau manifolds and we comment on fuzzy K3 surfaces and fuzzy quintic three-folds. Besides enlarging the number of available fuzzy spaces significantly, we show that the fuzzification of a projective toric variety amounts to a quantization of its toric base.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Fuzzy toric geometries
Тип paper
DOI 10.1088/1126-6708/2008/02/111
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 2008
Первая страница 111
Последняя страница 111
Аффилиация Christian Sämann; School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
Выпуск 02

Скрыть метаданые