Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор G. Akemann
Автор P.H. Damgaard
Дата выпуска 2008-03-01
dc.description Dirac operator eigenvalues split into two when subjected to two different external vector sources. In a specific finite-volume scaling regime of gauge theories with fermions, this problem can be mapped to a chiral Random Two-Matrix Theory. We derive analytical expressions to leading order in the associated finite-volume expansion, showing how individual Dirac eigenvalue distributions and their correlations equivalently can be computed directly from the effective chiral Lagrangian in the epsilon-regime. Because of its equivalence to chiral Random Two-Matrix Theory, we use the latter for all explicit computations. On the mathematical side, we define and determine gap probabilities and individual eigenvalue distributions in that theory at finite N, and also derive the relevant scaling limit as N is taken to infinity. In particular, the gap probability for one Dirac eigenvalue is given in terms of a new kernel that depends on the external vector source. This expression may give a new and simple way of determining the pion decay constant F<sub>π</sub> from lattice gauge theory simulations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Individual eigenvalue distributions of chiral random two-matrix theory and the determination of F<sub>π</sub>
Тип paper
DOI 10.1088/1126-6708/2008/03/073
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 2008
Первая страница 73
Последняя страница 073
Выпуск 03

Скрыть метаданые