Автор |
Ilarion V. Melnikov |
Дата выпуска |
2009-09-01 |
dc.description |
We study the topological heterotic ring in (0,2) Landau-Ginzburg models without a (2,2) locus. The ring elements correspond to elements of the Koszul cohomology groups associated to a zero-dimensional ideal in a polynomial ring, and the computation of half-twisted genus zero correlators reduces to a map from the first non-trivial Koszul cohomology group to complex numbers. This map is a generalization of the local Grothendieck residue. The results may be applied to computations of Yukawa couplings in a heterotic compactification at a Landau-Ginzburg point. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
(0,2) Landau-Ginzburg models and residues |
Тип |
paper |
DOI |
10.1088/1126-6708/2009/09/118 |
Electronic ISSN |
1029- 8479 |
Print ISSN |
1126-6708 |
Журнал |
Journal of High Energy Physics |
Том |
2009 |
Первая страница |
118 |
Последняя страница |
118 |
Аффилиация |
Ilarion V. Melnikov; Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Golm, Germany |
Выпуск |
09 |