| Автор | Ilarion V. Melnikov |
| Дата выпуска | 2009-09-01 |
| dc.description | We study the topological heterotic ring in (0,2) Landau-Ginzburg models without a (2,2) locus. The ring elements correspond to elements of the Koszul cohomology groups associated to a zero-dimensional ideal in a polynomial ring, and the computation of half-twisted genus zero correlators reduces to a map from the first non-trivial Koszul cohomology group to complex numbers. This map is a generalization of the local Grothendieck residue. The results may be applied to computations of Yukawa couplings in a heterotic compactification at a Landau-Ginzburg point. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | (0,2) Landau-Ginzburg models and residues |
| Тип | paper |
| DOI | 10.1088/1126-6708/2009/09/118 |
| Electronic ISSN | 1029- 8479 |
| Print ISSN | 1126-6708 |
| Журнал | Journal of High Energy Physics |
| Том | 2009 |
| Первая страница | 118 |
| Последняя страница | 118 |
| Аффилиация | Ilarion V. Melnikov; Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Golm, Germany |
| Выпуск | 09 |