Автор |
Shweta Singh |
Автор |
R S Kaushal |
Дата выпуска |
2003-01-01 |
dc.description |
We investigate the possibility of existence of dynamical invariant(s) for a few complex (non-hermitian) Hamiltonian systems H(x, p), in one dimension. For this purpose, we consider an extended complex phase space, characterized by x = x<sub>1</sub> + ip<sub>2</sub>, p = p<sub>1</sub> + ix<sub>2</sub>. We make use of the much discussed rationalization method to construct the invariants for a class of complex polynomial potentials that also includes some PT-symmetric ones. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Complex Dynamical Invariants for One-Dimensional Classical Systems |
Тип |
paper |
DOI |
10.1238/Physica.Regular.067a00181 |
Electronic ISSN |
1402-4896 |
Print ISSN |
0031-8949 |
Журнал |
Physica Scripta |
Том |
67 |
Первая страница |
181 |
Последняя страница |
185 |
Аффилиация |
Shweta Singh; Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India |
Аффилиация |
R S Kaushal; Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India |
Выпуск |
3 |