Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Krusienski, Dean J
Автор Sellers, Eric W
Автор Cabestaing, François
Автор Bayoudh, Sabri
Автор McFarland, Dennis J
Автор Vaughan, Theresa M
Автор Wolpaw, Jonathan R
Дата выпуска 2006-12-01
dc.description This study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for classifying offline data from eight users. The relative performance of the classifiers is evaluated, along with the practical concerns regarding the implementation of the respective methods. The results indicate that while all methods attained acceptable performance levels, SWLDA and FLD provide the best overall performance and implementation characteristics for practical classification of P300 Speller data.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2006 IOP Publishing Ltd
Название A comparison of classification techniques for the P300 Speller
Тип paper
DOI 10.1088/1741-2560/3/4/007
Electronic ISSN 1741-2552
Print ISSN 1741-2560
Журнал Journal of Neural Engineering
Том 3
Первая страница 299
Последняя страница 305
Последняя страница 305
Аффилиация Krusienski, Dean J; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA;
Аффилиация Sellers, Eric W; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
Аффилиация Cabestaing, François; LAGIS Laboratory, UMR-CNRS 8146, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
Аффилиация Bayoudh, Sabri; IRISA at the Université de Rennes 1, 2 Rue du Thabor, CS 46510, 35065 Rennes Cedex, France
Аффилиация McFarland, Dennis J; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
Аффилиация Vaughan, Theresa M; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
Аффилиация Wolpaw, Jonathan R; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
Выпуск 4

Скрыть метаданые