Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fruitet, Joan
Автор McFarland, Dennis J
Автор Wolpaw, Jonathan R
Дата выпуска 2010-02-01
dc.description People can learn to control electroencephalogram (EEG) features consisting of sensorimotor-rhythm amplitudes and use this control to move a cursor in one, two or three dimensions to a target on a video screen. This study evaluated several possible alternative models for translating these EEG features into two-dimensional cursor movement by building an offline simulation using data collected during online performance. In offline comparisons, support-vector regression (SVM) with a radial basis kernel produced somewhat better performance than simple multiple regression, the LASSO or a linear SVM. These results indicate that proper choice of a translation algorithm is an important factor in optimizing brain–computer interface (BCI) performance, and provide new insight into algorithm choice for multidimensional movement control.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2010 IOP Publishing Ltd
Название A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain–computer interface
Тип paper
DOI 10.1088/1741-2560/7/1/016003
Electronic ISSN 1741-2552
Print ISSN 1741-2560
Журнал Journal of Neural Engineering
Том 7
Первая страница 16003
Последняя страница 16011
Аффилиация Fruitet, Joan; Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France
Аффилиация McFarland, Dennis J; Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA
Аффилиация Wolpaw, Jonathan R; Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health and State University of New York, Albany, NY 12201, USA
Выпуск 1

Скрыть метаданые