Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Zdeborová, Lenka
Автор Boettcher, Stefan
Дата выпуска 2010-02-01
dc.description The asymptotic properties of random regular graphs are objects of extensive study in mathematics and physics. In this paper we argue, using the theory of spin glasses in physics, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between them; hence our conjecture is a surprising property for random regular graphs. We further support the conjecture with numerical simulations. A rigorous proof of this relation is an obvious challenge.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт IOP Publishing Ltd
Название A conjecture on the maximum cut and bisection width in random regular graphs
Тип paper
DOI 10.1088/1742-5468/2010/02/P02020
Electronic ISSN 1742-5468
Журнал Journal of Statistical Mechanics: Theory and Experiment
Том 2010
Первая страница P02020
Последняя страница 12
Аффилиация Zdeborová, Lenka; Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545, USA
Аффилиация Boettcher, Stefan; Physics Department, Emory University, Atlanta, GA 30322, USA
Выпуск 02

Скрыть метаданые