Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор T J Ligocki
Автор P O Schwartz
Автор J Percelay
Автор P Colella
Дата выпуска 2008-07-01
dc.description To construct finite-volume methods for PDEs in arbitrary dimension to arbitrary accuracy in the presence of irregular boundaries, we show that estimates of moments, integrals of monomials, over various regions are all that are needed. If implicit functions are used to represent the irregular boundary, the needed moments can be computed straightforwardly and robustly by using the divergence theorem, Taylor expansions, least squares, recursion, and 1D root finding. Neither a geometric representation of the irregular boundary nor its interior is ever needed or computed. The implicit function representation is general and robust. Implicit functions can be combined via constructive solid geometry to form complex boundaries from a rich set of primitives including interpolants of sampled data, for example, 2D/3D image data and digital elevation maps.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2008 IOP Publishing Ltd
Название Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry
Тип paper
DOI 10.1088/1742-6596/125/1/012080
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 125
Первая страница 12080
Последняя страница 12084
Аффилиация T J Ligocki; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Аффилиация P O Schwartz; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Аффилиация J Percelay; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Аффилиация P Colella; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Выпуск 1

Скрыть метаданые