Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор John W Conklin
Автор Aaron Swank
Автор Ke-Xun Sun
Автор Dan B DeBra
Дата выпуска 2009-03-01
dc.description Space-borne gravitational wave observatories like the Laser Interferometer Space Antenna (LISA) and those beyond, which may utilize a Modular Gravitational Reference Sensor (MGRS), greatly benefit from precise knowledge of the mass center location and moment of inertia tensor of the test mass prior to launch. The motion of the mass center of a drag-free test mass, which follows a pure geodesic, must be inferred from measurements of the surface. Therefore, knowledge of the mass center is critical for calibration of the cross-coupling between rotational and translational degrees of freedom. Together with the moment of inertia tensor, the mass center can also provide an estimate of the material density inhomogeneity to quadratic order, and the gravitational potential to second order, which improves modeling of self gravitation forces. These benefits, which are independent of the test mass shape, motivate the development of three new techniques for improving mass center and moment of inertia measurements beyond the current state of the art. A static pendulum is proposed to determine the mass center of a cubic test mass to ∼ 1 μm by measuring the equilibrium position with the cube in up to 24 different orientations relative to the pendulum platform. Measuring the natural frequency of a dynamic torsion pendulum can determine both the mass center and moment of inertia tensor of arbitrarily shaped objects to ∼ 5 μm and 1 part in ∼ 10<sup>4</sup> respectively. The velocity modulation technique for measuring the mass center of a sphere has raised the bar in precision to ∼ 150 nm, a factor of 20 improvement over the work presented at the LISA 6th symposium. This new technique involves rolling the sphere down a set of parallel rails to spectrally shift the mass center offset information to the rolling rate frequency, in order to avoid the 1/f noise that typically prevents other techniques from achieving precision below 1 μm.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2009 IOP Publishing Ltd
Название Mass properties measurement for drag-free test masses
Тип paper
DOI 10.1088/1742-6596/154/1/012019
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 154
Первая страница 12019
Последняя страница 12025
Аффилиация John W Conklin; Stanford University, Stanford, CA 94305, USA
Аффилиация Aaron Swank; Stanford University, Stanford, CA 94305, USA
Аффилиация Ke-Xun Sun; Stanford University, Stanford, CA 94305, USA
Аффилиация Dan B DeBra; Stanford University, Stanford, CA 94305, USA
Выпуск 1

Скрыть метаданые