Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jaideep Ray
Автор C Kennedy
Автор J Steensland
Автор H Najm
Дата выпуска 2005-01-01
dc.description Block-structured adaptively refined meshes are an efficient means of discretizing a domain characterized by a large spectrum of spatiotemporal scales. Further, they allow the use of simple data structures (multidimensional arrays) which considerably assist the task of using them in conjunction with sophisticated numerical algorithms. In this work, we show how such meshes may be used with high order (i.e. greater than 2nd order) discretization to achieve greater accuracies at significantly less computational expense, as compared to conventional second order approaches. Our study explores how these high order discretizations are coupled with high-order interpolations and filters to achieve high order convergence on such meshes. One of the side-effects of using high order discretizations is that one now obtains shallow grid hierarchies, which are easier to load balance. As a part of this work, we introduce the concept of bi-level (grid) partitioning and motivate, via an analytical model, how it holds the potential to significantly reduce load-imbalances while incurring a minimal communication cost.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2005 IOP Publishing Ltd
Название Advanced algorithms for computations on block-structured adaptively refined meshes
Тип paper
DOI 10.1088/1742-6596/16/1/014
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 16
Первая страница 113
Последняя страница 118
Аффилиация Jaideep Ray; Sandia National Laboratories, Livermore, CA, USA
Аффилиация C Kennedy; Sandia National Laboratories, Livermore, CA, USA
Аффилиация J Steensland; Sandia National Laboratories, Livermore, CA, USA
Аффилиация H Najm; Sandia National Laboratories, Livermore, CA, USA
Выпуск 1

Скрыть метаданые