Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jan Naudts
Дата выпуска 2010-12-01
dc.description The Boltzmann-Gibbs probability distribution, seen as a statistical model, belongs to the exponential family. Recently, the latter concept has been generalized. The q-exponential family has been shown to be relevant for the statistical description of small isolated systems. Two main applications are reviewed: 1. The distribution of the momentum of a single particle is a q-Gaussian, the distribution of its velocity is a deformed Maxwellian; 2. The configurational density distribution belongs to the q-exponential family.The definition of the temperature of small isolated systems is discussed. It depends on defining the thermodynamic entropy of a microcanonical ensemble in a suitable manner. The simple example of non-interacting harmonic oscillators shows that Rényi's entropy functional leads to acceptable results.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2010 IOP Publishing Ltd
Название The q-exponential family in statistical physics
Тип paper
DOI 10.1088/1742-6596/201/1/012003
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 201
Первая страница 12003
Последняя страница 12013
Аффилиация Jan Naudts; Universiteit Antwerpen, Groenenborgerlaan 1717, 2020 Antwerpen, Belgium
Выпуск 1

Скрыть метаданые